Boundedness for Codimension Two Submanifolds of Quadrics
نویسندگان
چکیده
It is proved that there are only finitely many families of codimension two subvarieties not of general type in Q6.
منابع مشابه
Classification Results for Biharmonic Submanifolds in Spheres
We classify biharmonic submanifolds with certain geometric properties in Euclidean spheres. For codimension 1, we determine the biharmonic hypersurfaces with at most two distinct principal curvatures and the conformally flat biharmonic hypersurfaces. We obtain some rigidity results for pseudo-umbilical biharmonic submanifolds of codimension 2 and for biharmonic surfaces with parallel mean curva...
متن کاملSubcanonicity of Codimension Two Subvarieties
We prove that smooth subvarieties of codimension two in Grassmannians of lines of dimension at least six are rationally numerically subcanonical. We prove the same result for smooth quadrics of dimension at least six under some extra condition. The method is quite easy, and only uses Serre’s construction, Porteous formula and Hodge index theorem.
متن کاملMinkowski Formulae and Alexandrov Theorems in Spacetime
The classical Minkowski formula is extended to spacelike codimension-two submanifolds in spacetimes which admit “hidden symmetry” from conformal KillingYano two-forms. As an application, we obtain an Alexandrov type theorem for spacelike codimension-two submanifolds in a static spherically symmetric spacetime: a codimensiontwo submanifold with constant normalized null expansion (null mean curva...
متن کاملS ep 2 01 4 MINKOWSKI FORMULAE AND ALEXANDROV THEOREMS IN SPACETIME
The classical Minkowski formula is extended to spacelike codimension-two submanifolds in spacetimes which admit “hidden symmetry” from conformal KillingYano two-forms. As an application, we obtain an Alexandrov type theorem for spacelike codimension-two submanifolds in a static spherically symmetric spacetime: a codimensiontwo submanifold with constant normalized null expansion (null mean curva...
متن کاملCurvature Estimates for Minimal Submanifolds of Higher Codimension
We derive curvature estimates for minimal submanifolds in Euclidean space for arbitrary dimension and codimension via Gauss map. Thus, SchoenSimon-Yau’s results and Ecker-Huisken’s results are generalized to higher codimension. In this way we improve Hildebrandt-Jost-Widman’s result for the Bernstein type theorem.
متن کامل